655 research outputs found

    Computing Small Certificates of Inconsistency of Quadratic Fewnomial Systems

    Get PDF
    B{\'e}zout 's theorem states that dense generic systems of n multivariate quadratic equations in n variables have 2 n solutions over algebraically closed fields. When only a small subset M of monomials appear in the equations (fewnomial systems), the number of solutions may decrease dramatically. We focus in this work on subsets of quadratic monomials M such that generic systems with support M do not admit any solution at all. For these systems, Hilbert's Nullstellensatz ensures the existence of algebraic certificates of inconsistency. However, up to our knowledge all known bounds on the sizes of such certificates -including those which take into account the Newton polytopes of the polynomials- are exponential in n. Our main results show that if the inequality 2|M| -- 2n \le \sqrt 1 + 8{\nu} -- 1 holds for a quadratic fewnomial system -- where {\nu} is the matching number of a graph associated with M, and |M| is the cardinality of M -- then there exists generically a certificate of inconsistency of linear size (measured as the number of coefficients in the ground field K). Moreover this certificate can be computed within a polynomial number of arithmetic operations. Next, we evaluate how often this inequality holds, and we give evidence that the probability that the inequality is satisfied depends strongly on the number of squares. More precisely, we show that if M is picked uniformly at random among the subsets of n + k + 1 quadratic monomials containing at least Ω\Omega(n 1/2+ϵ\epsilon) squares, then the probability that the inequality holds tends to 1 as n grows. Interestingly, this phenomenon is related with the matching number of random graphs in the Erd{\"o}s-Renyi model. Finally, we provide experimental results showing that certificates in inconsistency can be computed for systems with more than 10000 variables and equations.Comment: ISSAC 2016, Jul 2016, Waterloo, Canada. Proceedings of ISSAC 201

    An axially-symmetric Newtonian Boson Star

    Get PDF
    A new solution to the coupled gravitational and scalar field equations for a condensed boson field is found in Newtonian approximation. The solution is axially symmetric, but not spherically symmetric. For N particles the mass of the object is given by M=Nm0.02298N3GN2m5M = Nm - 0.02298 N^3 G_N^2 m^5, to be compared with M=Nm0.05426N3GN2m5M = Nm - 0.05426 N^3 G_N^2 m^5 for the spherically symmetric case.Comment: 4 pages, figures available on reques

    Renormalization Group Theory for a Perturbed KdV Equation

    Full text link
    We show that renormalization group(RG) theory can be used to give an analytic description of the evolution of a perturbed KdV equation. The equations describing the deformation of its shape as the effect of perturbation are RG equations. The RG approach may be simpler than inverse scattering theory(IST) and another approaches, because it dose not rely on any knowledge of IST and it is very concise and easy to understand. To the best of our knowledge, this is the first time that RG has been used in this way for the perturbed soliton dynamics.Comment: 4 pages, no figure, revte

    Multilinear Operators: The Natural Extension Of Hirota's Bilinear Formalism

    Full text link
    We introduce multilinear operators, that generalize Hirota's bilinear DD operator, based on the principle of gauge invariance of the τ\tau functions. We show that these operators can be constructed systematically using the bilinear DD's as building blocks. We concentrate in particular on the trilinear case and study the possible integrability of equations with one dependent variable. The 5th order equation of the Lax-hierarchy as well as Satsuma's lowest-order gauge invariant equation are shown to have simple trilinear expressions. The formalism can be extended to an arbitrary degree of multilinearity.Comment: 9 pages in plain Te

    Gurevich-Zybin system

    Full text link
    We present three different linearizable extensions of the Gurevich-Zybin system. Their general solutions are found by reciprocal transformations. In this paper we rewrite the Gurevich-Zybin system as a Monge-Ampere equation. By application of reciprocal transformation this equation is linearized. Infinitely many local Hamiltonian structures, local Lagrangian representations, local conservation laws and local commuting flows are found. Moreover, all commuting flows can be written as Monge-Ampere equations similar to the Gurevich-Zybin system. The Gurevich-Zybin system describes the formation of a large scale structures in the Universe. The second harmonic wave generation is known in nonlinear optics. In this paper we prove that the Gurevich-Zybin system is equivalent to a degenerate case of the second harmonic generation. Thus, the Gurevich-Zybin system is recognized as a degenerate first negative flow of two-component Harry Dym hierarchy up to two Miura type transformations. A reciprocal transformation between the Gurevich-Zybin system and degenerate case of the second harmonic generation system is found. A new solution for the second harmonic generation is presented in implicit form.Comment: Corrected typos and misprint

    Algebraic Bethe ansatz for a quantum integrable derivative nonlinear Schrodinger model

    Get PDF
    We find that the quantum monodromy matrix associated with a derivative nonlinear Schrodinger (DNLS) model exhibits U(2) or U(1,1) symmetry depending on the sign of the related coupling constant. By using a variant of quantum inverse scattering method which is directly applicable to field theoretical models, we derive all possible commutation relations among the operator valued elements of such monodromy matrix. Thus, we obtain the commutation relation between creation and annihilation operators of quasi-particles associated with DNLS model and find out the SS-matrix for two-body scattering. We also observe that, for some special values of the coupling constant, there exists an upper bound on the number of quasi-particles which can form a soliton state for the quantum DNLS model.Comment: 17 pages, Latex, minor typos corrected, to be published in Nucl. Phys.

    Second harmonic generation: Goursat problem on the semi-strip and explicit solutions

    Full text link
    A rigorous and complete solution of the initial-boundary-value (Goursat) problem for second harmonic generation (and its matrix analog) on the semi-strip is given in terms of the Weyl functions. A wide class of the explicit solutions and their Weyl functions is obtained also.Comment: 20 page

    Shock waves in one-dimensional Heisenberg ferromagnets

    Full text link
    We use SU(2) coherent state path integral formulation with the stationary phase approximation to investigate, both analytically and numerically, the existence of shock waves in the one- dimensional Heisenberg ferromagnets with anisotropic exchange interaction. As a result we show the existence of shock waves of two types,"bright" and "dark", which can be interpreted as moving magnetic domains.Comment: 10 pages, with 3 ps figure

    Novel multi-band quantum soliton states for a derivative nonlinear Schrodinger model

    Full text link
    We show that localized N-body soliton states exist for a quantum integrable derivative nonlinear Schrodinger model for several non-overlapping ranges (called bands) of the coupling constant \eta. The number of such distinct bands is given by Euler's \phi-function which appears in the context of number theory. The ranges of \eta within each band can also be determined completely using concepts from number theory such as Farey sequences and continued fractions. We observe that N-body soliton states appearing within each band can have both positive and negative momentum. Moreover, for all bands lying in the region \eta > 0, soliton states with positive momentum have positive binding energy (called bound states), while the states with negative momentum have negative binding energy (anti-bound states).Comment: LaTeX, 20 pages including 2 figure
    corecore